Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We examine the relationship between circumnebular extinction and core mass for sets of [O III]-bright planetary nebulae (PNe) in the Large Magellanic Cloud and M31. We confirm that for PNe within 1 magnitude of the planetary nebula luminosity function’s (PNLF’s) bright-end cutoff magnitude (M*), higher core-mass PNe are disproportionally affected by greater circumnebular extinction. We show that this result can explain why the PNLF cutoff is so insensitive to population age. In younger populations, the higher-mass, higher-luminosity cores experience greater circumnebular extinction from the dust created by their asymptotic giant branch (AGB) progenitors compared to the lower-mass cores. We further show that when our core-mass–nebular extinction law is combined with post-AGB stellar evolutionary models, the result is a large range of population ages where the brightest PNe all have nearly identical [O III] luminosities. Finally, we note that while there is some uncertainty about whether the oldest stellar populations can produce PNe as bright as M*, this issue is resolved if the initial–final mass relation (IFMR) for the lowest-mass stars results in slightly more massive cores, as observed in some clusters. Alternatively, introducing a small amount of intrinsic scatter (0.022 Msun) into the IFMR also addresses this uncertainty.more » « lessFree, publicly-accessible full text available April 15, 2026
-
Abstract Thanks to the MUSE integral field spectrograph on board the Very Large Telescope (VLT), extragalactic distance measurements with the [Oiii]λ5007 planetary nebula luminosity function (PNLF) are now possible out to ∼40 Mpc. Here we analyze the VLT/MUSE data for 20 galaxies from the ESO public archive to identify the systems’ planetary nebulae (PNe) and determine their PNLF distances. Three of the galaxies do not contain enough PNe for a robust measure of the PNLF, and the results for one other system are compromised of the galaxy’s internal extinction. However, we obtain robust PNLF distances for the remaining 16 galaxies, two of which are isolated and beyond 30 Mpc in a relatively unperturbed Hubble flow. From these data, we derive a Hubble constant of 74.2 ± 7.2 (stat) ±3.7 (sys) km s−1Mpc−1, a value that is very similar to that found from other quality indicators (e.g., Cepheids, the tip of the red giant branch, and surface brightness fluctuations). At present, the uncertainty is dominated by the small number of suitable galaxies in the ESO archive and their less-than-ideal observing conditions and calibrations. Based on our experience with these systems, we identify the observational requirements necessary for the PNLF to yield a competitive value forH0that is independent of the Type Ia supernova distance scale.more » « less
-
Abstract Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [Oiii]λ5007 fluxes greater than the apparent bright-end cutoff of the planetary nebula luminosity function (PNLF). Here we identify PN superpositions as one likely cause for the phenomenon and describe the proper procedures for deriving PNLF distances when object blends are a possibility. We apply our technique to two objects: a model Virgo-distance elliptical galaxy observed through a narrowband interference filter, and the Fornax lenticular galaxy NGC 1380 surveyed with the MUSE integral-field unit spectrograph. Our analyses show that even when the most likely distance to a galaxy is unaffected by the possible presence of PN superpositions, the resultant value will still be biased toward too small a distance due to the asymmetrical nature of the error bars. We discuss the future of the PNLF in an era where current ground-based instrumentation can push the technique to distances beyond ∼35 Mpc.more » « less
-
Aims.We perform a deep survey of planetary nebulae (PNe) in the spiral galaxy NGC 300 to construct its planetary nebula luminosity function (PNLF). We aim to derive the distance using the PNLF and to probe the characteristics of the most luminous PNe. Methods.We analysed 44 fields observed with MUSE at the VLT, covering a total area of ∼11 kpc2. We find [O III]λ5007 sources using the differential emission line filter (DELF) technique. We identified PNe through spectral classification with the aid of the BPT diagram. The PNLF distance was derived using the maximum likelihood estimation technique. For the more luminous PNe, we also measured their extinction using the Balmer decrement. We estimated the luminosity and effective temperature of the central stars of the luminous PNe based on estimates of the excitation class and the assumption of optically thick nebulae. Results.We identify 107 PNe and derive a most-likely distance modulus $$ (m-M)_0 = 26.48^{+0.11}_{-0.26} $$ ($$ d = 1.98^{+0.10}_{-0.23} $$ Mpc). We find that the PNe at the PNLF cutoff exhibit relatively low extinction, with some high-extinction cases caused by local dust lanes. We present the lower limit luminosities and effective temperatures of the central stars for some of the brighter PNe. We also identify a few Type I PNe that come from a young population with progenitor masses > 2.5 M⊙but do not populate the PNLF cutoff. Conclusions.The spatial resolution and spectral information of MUSE allow precise PN classification and photometry. These capabilities also enable us to resolve possible contamination by diffuse gas and dust, improving the accuracy of the PNLF distance to NGC 300.more » « less
-
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)We present the current design of WFOS, a wide-field UV/optical (0.31-1.0 µm) imaging spectrograph planned for first-light on the TMT International Observatory 30 m telescope. WFOS is optimized for high sensitivity across the entire optical waveband for low-to-moderate resolution (R ∼ 1500-5000) long-slit and multi-slit spectroscopy of very faint targets over a contiguous field of view of 8′ .3×3 ′ .0 at the f/15 Nasmyth focus of TMT. A key design goal for WFOS is stability and repeatability in all observing modes, made possible by its gravity-invariant opto-mechanical structure, with a vertical rotation axis and all reconfigurable components moving only in planes defined by tiered optical benches parallel to the Nasmyth platform. WFOS’s optics include a linear ADC correcting a 9′ diameter field, including both the science FoV and 4 patrolling acquisition, guiding, and wavefront sensing camera systems; a novel 2-mirror reflective collimator allowing the science FoV to be centered on the telescope optical axis; a dichroic beamsplitter dividing the collimated beam into 2 wavelength-optimized spectrometer channels (blue: 0.31-0.56 µm; red: 0.54-1.04 µm); selectable transmissive dispersers (VPH and/or VBG) with remotely configurable grating tilt (angle of incidence) and camera articulation that enable optimization of diffraction efficiency and wavelength coverage in each channel; all-refractive, wavelength-optimized f/2 spectrograph cameras, and UV/blue and red-optimized detector systems. The predicted instrumental through put of WFOS for spectroscopy averages > 56% over the full 0.31-1 µm range, from the ADC to the detector. When combined with the 30 m TMT aperture, WFOS will realize a factor of ∼20 gain in sensitivity compared to the current state of the art on 8-10 m-class telescopes.more » « less
An official website of the United States government
